
The Cut-o� phenomenon

for Monte Carlo Markov Chains
IRTG Stochastic Models of Complex Processes

Michele Salvi

Roma3 University

February 16, 2010

Michele Salvi (Roma3 University) The Cut-o� phenomenon for MCMC February 16, 2010 1 / 19



Approach to equilibrium Reversible Markov Chains

Reversible Markov Chains

Consider a discrete-time Markov Chain on a �nite state space Ω with

transition matrix P that is

irreducible;

aperiodic;

reversible with respect to a probability measure π, that is

π(x)P(x , y) = π(y)P(y , x), ∀x , y ∈ Ω. (1)

If π satis�es (1), known as detailed balance equations, then it is a

stationary distribution for our chain P :

πP = π.
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Approach to equilibrium Ergodic theorem

Theorem (Ergodic theorem)

Let (Xt) be an irreducible and aperiodic Markov chain with transition

matrix P. Then there exists a unique stationary distribution π for the

chain. Moreover,

Pt(x , y)
t→∞−−−→ π(y) ∀x , y ∈ Ω.

?
Problem of the approach to the equilibrium:

how fast is this convergence?
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Approach to equilibrium Total variation distance

We have �rst to de�ne a notion of distance.

The total variation distance between two probability measures µ and ν is

‖µ− ν‖
TV

:= max
A⊂Ω
|µ(A)− ν(A)|

=
1

2

∑
x∈Ω

|µ(x)− ν(x)|.

Then we can de�ne the distance of a Markov Chain P from its stationary

distribution π at step t as

d(t) := max
x∈Ω
‖Pt(x , ·)− π‖

TV
. (2)

It is easy to show that this is a decreasing function of t.
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Approach to equilibrium Mixing time

Mixing time

The ε-mixing time of a Markov Chain is

tmix(ε) := min{t : d(t) ≤ ε}. (3)

We also set for simplicity tmix := tmix(1/4).
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Approach to equilibrium Spectral gap

One possible approach to the study of the mixing time is the study of the

eigenvalues of P . Let's label them in decreasing order:

1 = λ1 ≥ λ2 ≥ ... ≥ λ|Ω| ≥ −1.

P is irreducible =⇒ λ2 < 1;

P is lazy =⇒ λi ≥ 0, ∀i .

Let gap := 1− λ2 be the spectral gap of the chain and call its inverse

trel := 1
gap

the relaxation time of the chain. Then

Proposition

(trel − 1) log

(
1

2ε

)
≤ tmix(ε) ≤ log

(
1

επmin

)
trel . (4)
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The Cut-o� Phenomenon De�nition

Cut-o�

De�nition

Let (X
(n)
t ) be a sequence of Markov Chains on state spaces Ω(n), with

transition matrices P(n), stationary distributions π(n) and ε-mixing times

t
(n)
mix

(ε). We say that this sequence exhibits Cut-o� if

lim
n→∞

t
(n)
mix

(ε)

t
(n)
mix

(1− ε)
= 1, ∀0 ≤ ε ≤ 1

2
. (5)
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The Cut-o� Phenomenon De�nition

Figure: For a sequence of chains with Cut-o�, the graph of dn(t), zoomed on a

time-scale of t
(n)
mix

, approaches a step function as n→∞.
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The Cut-o� Phenomenon Cut-o� window

Cut-o� window

De�nition

We say that a sequence of Markov Chains has Cut-o� with a window of

size ωn if

ωn = o(t
(n)
mix

)

lim
α→∞

lim inf
n→∞

dn(t
(n)
mix
− αωn) = 1,

lim
α→∞

lim sup
n→∞

dn(t
(n)
mix

+ αωn) = 0.
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The Cut-o� Phenomenon Cut-o� window

Figure: In a small time-interval around t
(n)
mix

, the distance falls from near 1 to

almost 0.
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Glauber dynamics for Ising The model

Examples

Consider a graph G = (V ,E ); in each vertex we can place either a positive

or a negative spin.

The state space of our process is Ω = {−1,+1}V .
We assign to every con�guration σ ∈ Ω an energy given by

H(σ) := −1

n

∑
v ,w∈V
v∼w

σ(v)σ(w).

Then we can de�ne the Gibbs measure on Ω given by

µ(σ) :=
e−βH(σ)

Z (β)
,

where Z (β) is the partition function and the parameter β can be

interpreted as the inverse of the temperature.
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Glauber dynamics for Ising The dynamics

The heat-bath Glauber dynamics on this model is the following:

select uniformly at random a vertex in V ;

'erase' its spin;

replace it with a brand new spin generated according to µ.

That is, if we choose vertex w ∈ V to be updated in a con�guration

σ ∈ Ω, the probability of putting a spin x ∈ ±1 in w is

p(σ, x) =
eβS(σ,x)

eβS(σ,x) + e−βS(σ,x)
, (6)

where S(σ, x) :=
∑
v∼w

σ(v).

This dynamics is reversible with respect to measure µ.
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Glauber dynamics for Ising Complete graph case

Theorem (Levin, Luczak, Peres, 2007)

Let (X
(n)
t ) be the Glauber dynamics for the Ising model on the n-complete

graph. If β < 1, there is a Cut-o� at time tn := n log n
2(1−β) with window

ωn = O(n).

Furthermore, if β = 1, then tmix = O(n
3
2 ), if β > 1, tmix has an

exponential behaviour, and in both case there is no Cut-o�.
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Glauber dynamics for Ising Complete graph case

Main idea:

The big symmetry of the model allows us to deal just with a simpler

process, namely the magnetization chain:

M
(n)
t :=

1

n

n∑
v=1

X
(n)
t (v),

with state space Ω
(n)
M

:= {−1,−1 + 2
n
, ..., 1} (B&D chain).

We use a coupling of the original dynamics to make the magnetization

of the two copies of the chain merge in tn steps (in particular the most

of the work is to make them di�er for less than cost.√
n
, which is achieved

via the monotone coupling strategy).

Once the magnetizations have met, we need only other O(n) steps to

make the two copies coincide.
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Glauber dynamics for Ising Ising on the lattice

Theorem (Lubetzky, Sly, 2009)

Let (X
(n)
t ) be the continuous-time Glauber dynamics for the Ising model on

the lattice
( Z
nZ
)2

with periodic boundary conditions. Let

βc = 1
2
log(1 +

√
2) be the critical inverse-temperature.

Then, if 0 ≤ β < βc , there is Cut-o� at time tn := λ−1∞ log n with a window

of size O(log log n), where λ∞ is the spectral gap of the dynamics on the

in�nite-volume lattice.

The Theorem can be extended to the case of the
( Z
nZ
)d
, with d ∈ N,

whenever β and h (the external �eld) are such that the strong spatial

mixing property holds.
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Then, if 0 ≤ β < βc , there is Cut-o� at time tn := λ−1∞ log n with a window

of size O(log log n), where λ∞ is the spectral gap of the dynamics on the

in�nite-volume lattice.

The Theorem can be extended to the case of the
( Z
nZ
)d
, with d ∈ N,

whenever β and h (the external �eld) are such that the strong spatial

mixing property holds.
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Glauber dynamics for Ising Ising on the lattice

Main idea:

Fundamental concept of update support: the set of spins which, given

an update sequence, actually in�uences the �nal con�guration.

This set is shown to be sparse with high probability, that is,

concentrated in small islands far enough from each other to be

considered almost independent.

Studying the L2-mixing of these smaller lattices is enough to control

the mixing of the whole dynamics.
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Glauber dynamics for Ising Short history

1981: First proof of the existence of a Cut-o� for the random transposition
Markov chain on the symmetric group by Diaconis and Shahshahani (never used
the term 'Cut-o�');

1986: Introduction of the notion of Cut-o�, proof of its existence for the
top-in-at-random card shu�ing chain by Diaconis and Aldous;

1995: in his survey of the Cut-o� phenomenon Diaconis says:
"At present writing, proof of a cuto� is a di�cult, delicate a�air, requiring detailed

knowledge of the chain, such as all eigenvalues and eigenvectors. Most of the

examples where this can be pushed through arise from random walk on groups,

with the walk having a fair amount of symmetry.";

2004: Cut-o� proved for Random Walks on �nite groups (Salo�-Coste);

2004: Peres conjectures that a necessary and su�cient condition for Cut-o� is that

gap
(n) · t(n)

mix

n→∞−−−→∞. (7)

This was shown not to be always true, but is still believed to hold for many
'natural' classes of Markov Chains (e.g. proved for B&D Markov Chains in 2008);

2009: Cut-o� proved for the Glauber dynamics for the Ising model on the lattice in
any dimension, whenever strong spatial mixing holds, by Sly and Lubetzky.
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Greetings

Thank you!
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